Как построить дом без фундамента: старые и современные способы. История дома из сруба - фундамент в старину Они сформировались на древнем фундаменте

14.07.2008 14:12:38

Один из самых крупных авторитетов в истории архитектуры итальянский зодчий эпохи Возрождения Андреа Палладио утверждал, что из всех ошибок, происходящих на стройке, наиболее пагубны те, которые касаются фундамента, так как они влекут за собой гибель всего здания и исправляются с величайшим трудом. Именно поэтому обычно сдержанный Палладио требовал, чтобы архитектор посвятил «этому предмету все свое внимание»!

Мудрый Рудаки, понимая значение фундамента, также советовал:

«Закладывай крепко основы для зданий:

Основа для зданья подобна охране».

А злые языки современников приписывают «падение» знаменитой наклонной башни в Пизе тому обстоятельству, что незадачливый зодчий Банануус попросту сэкономил на фундаменте, стремясь увеличить свой доход.

Фундаментом, как повествует древний трактат, называется основание постройки, т.е. та часть, которая находится в земле и несет на себе тяжесть всего здания, видимого над землей. В одних местах фундаменты даются самой природой, в других приходится прибегать к искусству.

Самые древние египетские храмы, несмотря на свою массивность, строились так, что их внутренние стены вообще не имели фундаментов. Со временем отношение к фундаментам изменилось. Уже в IV в. до н.э. не только наружные стены помещений покоились на солидном основании двух- или трехслойной кладки, уходящей в землю почти на 1,4 м. Фундамент начали устраивать по всей площади строения. Знаменитые храмы Рамсеса IV в Дар-Эль-Бахри и Нектанеба II в Эль-Кабе стоят на восьмислойном основании, образующем массивную платформу. В Древней Греции фундаменты обычно возводились не сплошными, а только под стенами и отдельными опорами.

Многообразны виды фундаментов. Вот, к примеру, хижины из дерева, веток и листьев в селениях Малонезии на Тробианских островах в Океании покоятся на мощных каменных плитах либо на сваях, возвышаются над уровнем земли на 2 м. Лишь в Новой Зеландии они слегка углублены в землю. Сегодня 18 тыс. малонезиййцев живут в домах на сваях, забитых в дно залива.

Иногда жилища располагали на плотах, иногда на особых помостах, поддерживаемых сваями, на насыпях или дамбах среди воды. Такой тип жилища существует в разных уголках земного шара и в наши дни у народов, занимающихся рыболовством. Исследователи выяснили, что подобные и более примитивные жилища европейцы строили более 16 тысячелетий назад.

Ученые предполагают, что свайные постройки - это элементарная защита от зверей, людей, приливов воды. А полуоседлые охотники использовали в качестве фундамента живые деревья, устраивая на них свои прочные жилища, наподобие птичьих гнезд. Здесь, пожалуй, действительно преобладала забота о безопасности.

На длинных сосновых и дубовых сваях, соединенных сложной решетчатой системой, выстроены дома в Венеции. Под основание только одной церкви Санта Мария делла Салютэ, построенной в XVII в., использовали 110 тыс. свай. При перестройке Петропавловской крепости в каменную, начатой в 1706г. и продлившейся с перерывом более 30 лет, было забито около 40 тыс. свай. В XVI в. в Голландии, для возведения фундамента амстердамской ратуши, понадобилось вбить в насыщенную водой почву свыше 13 тыс. свай.

Дело это было весьма непростым, ведь только в XIX в. сваи в землю стали забивать паровым копром (за 1 ч 10-15 свай в зависимости от грунта), а до этого их забивали только вручную.

Свайные постройки в Европе свидетельствуют не только о строительных приемах, но и о прочности первобытнообщинных порядков. Для того чтобы вырубить и заострить каменным топором сотни,

А иногда и тысячи свай, доставить их к берегу озера и вбить в топкую почву, требовалось огромное количество рабочих рук. Должен был существовать хорошо организованный коллектив и умелый «прораб». В те далекие времена подобным коллективам могла быть только родовая община, спаянная не только кровными узами, но и коллективным производством.

Их постройки найдены в Северной Италии, Южной Германии, в Северной Европе - от Ирландии до Швеции, их остатки –в Вологодской области и на Урале.

В позднем неолите начали сооружать капитальные фундаменты: пространство между наружными стенами фундамента засыпали камнем и утрамбовывали глиной.

Строительство на сваях, известное с древнейших времен, применяется в самых смелых проектах будущего, например, в проектах городов, сооружаемых среди моря.

На Руси срубы жилых и общественных зданий еще в XVIIв. Чаще ставились на землю без фундаментов, в связи, с чем нижние венцы рубились из кондовой сосны или лиственницы и опирались в углах на опоры-валуны. Возводились и массивные фундаменты из колотого песчаника или известняка на растворе на глубину 90-120 см и другие, более сложные фундаменты. Один из таких фундаментов возведен под стены уникальной церкви Покрова на Нерли близ Владимира. Фундамент из булыжного камня заложен на глубину 1,6 м, и его подошва упиралась на слой тугопластичной глины. Старые мастера показали хорошее знание строительной геологии. Под фундаментом возводили в два приема основание стен высотой 3,7 м из тесаного камня. Снаружи и внутри эти стены обсыпали глинистым супесчаным грунтом, затем грунт плотно утрамбовывали. Таким образом, основание храма оказалось на глубине 5,3 м внутри искусственного холма.

В строительстве Успенского собора в Москве в 1475г. Фьораванте «по своей хитрости» впервые применил глубокое заложение фундамента (свыше 4м), под который предварительно были забиты дубовые сваи. Спустя 500 лет в Москве соорудили огромную Останкинскую башню высотой 536 м. Башня, вес которой вместе с фундаментом составлял 51 400 т, была возведена на монолитном железобетонном кольцевом фундаменте шириной 9,5 м, высотой 3 м и диаметром (описанной окружности) 74 м. Фундамент заложен в грунт всего на глубину 4,65 м.

По распоряжению Петра I составлялись письменные указания, как класть фундамент. Известны многие старинные сметы на строительство, в которых описываются фундаменты.

В России первое руководство по выбору оснований и устройству фундаментов появилось в первой четверти XVIII в.

Для строительства крупных железнодорожных мостов, развернувшегося в конце первой половины XIX в., потребовалось разработать научно обоснованные приемы устройства оснований и фундаментов.

Одним из основоположников науки об основаниях и фундаментах в России был инженер М.С. Волков, который в работах «Об исследовании грунтов земли, производимом в строительном искусстве»(1835) и «Об основаниях каменных зданий»(1840) дал стройную теорию оснований и фундаментов, схема и основная часть которой сохранились до настоящего времени.

Первый систематический курс по основаниям и фундаментам, составленный проф. В.М.Карловичем, был издан в 1869 г.

Определение минимальной глубины заложения фундамента из условий прочности основания впервые было дано в 60-х годах прошлого столетия проф. Г.Е.Паукером. Этот вопрос экспериментально исследовал проф. В.И. Курдюмов, который установил, что при вдавливании жесткого фундамента в сыпучий грунт в последнем образуются криволинейные поверхности скольжения. Опыты Курдюмова описаны в его труде «О сопротивлении естественных оснований», изданном в 1889 г.

Важной задачей в XX столетии являлось создание теории расчета оснований и фундаментов.

В 1914 г. проф. П.А.Минаев на основе экспериментальных работ показал возможность применения теории упругих тел для определения напряжений и деформаций в сыпучих телах. Это позволило использовать теорию упругости в качестве теоретической базы механики грунтов. Этому также способствовала работа проф. К. Терцаги «Строительная механика грунтов на физической основе».

В Советском Союзе механика грунтов получила большое развитие в связи с огромными задачами, поставленными перед строителями планами народного хозяйства. Для их выполнения потребовалось решить многие сложные проблемы фундаментостроения.

Конструкции фундаментов.

Фундаментом называют нижнюю (подземную или подводную) конструкцию здания или сооружения, которая предназначена для передачи нагрузки от здания или сооружения на основание. Фундаменты должны быть прочными, долговечными и устойчивыми, морозостойкими, способными сопротивляться действию грунтовых агрессивных вод, а также экономичными.

По конструкции фундаменты бывают ленточные, свайные, столбчатые и плитные сплошные. Свайные фундаменты применяют при необходимости передачи на слабый грунт значительных нагрузок.

По материалу сваи могут быть деревянными, стальными, бетонными, железобетонными и комбинированными. Наибольшее распространение получили железобетонные сваи квадратного и круглого сечений, сплошные и пустотелые. В зависимости от размеров различают сваи короткие(3-6 м) и длинные(6-20). В зависимости от передачи нагрузки на грунт различают сваи-стойки и висячие сваи. Первые проходят через слабые грунты и опираются на прочный грунт, передавая на него нагрузку; висячие сваи уплотняют рыхлый грунт при забивке, и передают нагрузку на него за счет сил трения, возникающих между боковыми поверхностями свай и слоем рыхлого грунта.

По способу изготовления и погружения в грунт сваи бывают забивные и набивные. Забивные изготовляют заранее и погружают в грунт с помощью молота, вдавливанием или вибрацией. Набивные сваи устраивают на месте путем заполнения скважин в грунте бетоном или железобетоном. Поверху сваи соединяют балкой или железобетонной плитой, называемой ростверком. На ростверк опирают несущие конструкции здания (сооружения), и он обеспечивает равномерную передачу нагрузок на сваи. Ростверк делают монолитным или сборным (из железобетонных элементов-оголовников).

По расположению ростверка фундаменты бывают с низким и высоким ростверком. В первом случае головки свай заглублены ниже поверхности грунта, во втором-головки свай располагают выше поверхности грунта.Свайные фундаменты не требуют больших объемов земляных работ, при их устройстве отпадает необходимость в водоотливе; они экономичны по расходу бетона, индустриальны и значительно снижают трудозатраты и стоимость строительства.

Глубина заложения фундамента- это расстояние от его подошвы до спланированной поверхности грунта, определяемое по нормам. По глубине заложения фундаменты бывают мелкого заложения- до 4-5 м и глубокого заложения более 5 м.

По виду материала ленточные фундаменты бывают железобетонные, бетонные (сборные и монолитные), бутобетонные, бутовые.

Ленточные фундаменты являются наиболее распространенными, так как они применяются при строительстве зданий с несущими стенами различной этажности. Для зданий жилищно-гражданского и культурно-бытового назначения применяют, как правило, сборные ленточные фундаменты из железобетонных плит-подушек (ФЛ) (ГОСТ 13580-85) и фундаментных стеновых блоков (ФБС) (ГОСТ 13579-78). Плиты-подушки ленточных фундаментов –это элементы подошвы с относительно небольшой длиной консолей, поперечное сечение которых определяется величиной поперечной силы. В этих элементах высокие прочностные свойства и преимущества сборного железобетона реализованы недостаточно эффективно, что негативно отражается на стоимости фундаментов.

Стоимость сборных ленточных фундаментов малоэтажных зданий в зависимости от инженерно- геологических и климатических условий составляет 25-45% общих затрат на здание. Высокая стоимость ленточных фундаментов объясняется тем, что фундаментные бетонные блоки (ФБС) неэкономичны по расходу бетона, так как их несущая способность используется примерно на 10%. Фундаментные блоки способны выдержать нагрузку от веса здания в 14 этажей и более, тогда как в настоящее время в небольших городах строятся в основном 5-9-этажные здания, а в пригородах и сельских районах доминирует малоэтажное строительство - коттеджи и дома усадебного типа.

Столбчатые фундаменты одноэтажных и малоэтажных зданий выполняются из типовых бетонных блоков ФБС 9,5 или ФБС 9,4, устанавливаемых на железобетонные плиты (ФЛ) длиной 1,2 м. Для опирания стен используются типовые несущие перемычки или фундаментные балки. Шаг столбов для малоэтажных зданий принимается 2,4-3,6, а для одноэтажных производственных зданий- 6,0 или 3,0 м.

Столбы устанавливаются под углами зданий, в местах пересечения стен и под несущими простенками. Применение столбчатых фундаментов для малоэтажных зданий экономически целесообразно в том случае, если прочные грунты залегают на глубине 2,4-3,0 м.

Нагрузка, передаваемая фундаментом, вызывает в основании напряженное состояние и деформирует его. Глубина и ширина напряженной зоны значительно превосходят ширину подошвы фундаментов. По мере углубления ниже подошвы фундамента область распространения напряжений расширяется, но до известного предела, а их абсолютное значение уменьшается. Например, если напряжение под подошвой фундамента принять за единицу, оно уменьшается до 0,34 для фундамента квадратного в плане и до 0,55- для ленточного фундамента.

Деформации основания, происходящие, главным образом, вследствие уплотнения грунтов, вызывают осадку здания. Осадка бывает равномерная, когда все элементы здания опускаются одинаково на всей его площади и в конструкциях здания не возникает дополнительных напряжений, и неравномерная, когда отдельные элементы здания опускаются на различную относительно друг друга глубину. В этом случае в конструкциях здания могут возникнуть дополнительные напряжения. В зависимости от неравномерности осадки дополнительные напряжения либо могут быть безопасно восприняты зданием, либо могут вызывать трещины, деформации и даже разрушение здания.

Таким образом, главную опасность для сохранности здания и предохранения его от появления недопустимых для нормальной эксплуатации конструкций трещин и повреждений представляет не столько осадка основания, сколько ее неравномерность.

Сплошные фундаменты устраивают в виде массивной монолитной плиты под всем зданием. Такие фундаменты обеспечивают равномерную осадку всего здания, защищают подвалы от подпора грунтовых вод. Их возводят на слабых или неоднородных грунтах при значительных нагрузках. Монолитную железобетонную плиту устраивают чаще всего сплошной и реже –ребристой.

Фундаменты здания могут исполнять роль стен подвального этажа. Техническое подполье –это помещение, которое используют для размещения инженерного оборудования и прокладки коммуникаций. Фундаменты, стены и полы подвалов необходимо изолировать от просачивающихся через грунт поверхностных вод, а также от капиллярной поднимающейся вверх грунтовой влаги.

Изоляция от грунтовой сырости и грунтовых вод подземных конструкций зданий и сооружений достигается применением плотного монолитного бетона с пластифицирующими или водоотталкивающими добавками или устройством гидроизоляции. При использовании обычного бетона или кладки из других материалов (кирпича, бутового камня и др.) гидроизоляцию делают цементно-песчаной, асфальтовой, обмазочной (горячим битумом, холодной полимер битумной мастикой-эластимом), оклеечной в несколько слоев (рубероидом, толем, гидроизолом, металлоизолом, борулином).При защите от грунтовой сырости и при небольших напорах грунтовых вод применяют оклеечную, или обмазочную гидроизоляцию, которая не всегда выполняется качественно.

При расположении уровня грунтовых вод ниже уровня пола подвала устраивают горизонтальную и вертикальную гидроизоляцию. Горизонтальная гидроизоляция создается путем устройства бетонной подготовки и водонепроницаемого пола подвала, например асфальтового, прокладкой в двух уровнях в наружных и внутренних стенах оклеечной непрерывной ленты из рулонных материалов. Первый оклеечный слой укладывают на уровне пола подвала, второй- ниже перекрытия подвального этажа. Вертикальную гидроизоляцию стен подвала производят обмазкой их наружных поверхностей горячим битумом, спецмастикой.

При расположении уровня грунтовых вод выше пола подвала для гидроизоляции необходимо создавать своеобразную «оболочку», способную сопротивляться напору грунтовых вод. При больших напорах грунтовых вод гидроизоляцию устраивают по внутренней поверхности стен подвала, а поверх гидроизоляции пола укладывают железобетонную плиту.

В борьбе с грунтовыми водами весьма эффективно устройство дренажа. Дренаж осуществляют так: вокруг здания на расстоянии 2-3 м от фундамента роют канавы с уклоном 0,002-0,006 в сторону сборной отводящей канавы. Для стока воды по дну канавы прокладывают трубы с отверстиями. Канавы с трубами засыпают гравием, крупным песком, затем грунтом. Вода по тренажным трубам стекает в реку или в определенное пониженное место, например в овраг.

При строительстве на пучинистых грунтах до последнего времени основным мероприятием являлось заложение фундаментов ниже расчетной глубины сезонного промерзания. Однако для малонагруженных фундаментов малоэтажных зданий это приводит к их удорожанию на 25-50%. При увеличении глубины заложения действие нормальных сил на подошву прекращается. Но касательные силы пучения по боковым поверхностям фундамента значительно возрастают.

В малоэтажных зданиях эти силы обычно превосходят нагрузку, действующую на фундаменты, вследствие чего последние подвергаются пучению, т. е. Деформируются. В конечном итоге это приводит стены здания в аварийное состояние. Поэтому в настоящее время при строительстве малоэтажных зданий целесообразно применять мало загубленные фундаменты, обеспечивающие:

Снижение стоимости за счет сокращения трудоемкости, расхода бетона и сроков производства работ нулевого цикла;

Достаточно полное использование несущей способности грунтов и материалов фундаментов;

Сокращение объема опалубочных, арматурных и земляных работ;

Возможность выполнения фундаментов с практически одинаковой эффективностью в различных погодных и грунтовых условиях.

Фундаментостроение относится к категории работ повышенной ответственности, где отступление от требований нормативных документов чревато самыми серьезными последствиями. Имеется большое число примеров, когда нарушение правил проектирования и производства работ приводило к деформациям строений, а, следовательно, к большим материальным издержкам.

Чтобы выбрать рациональный фундамент здания, соответствующий геологическим условиям участка застройки, и избежать ошибок при строительстве с их возможными последствиями, необходимо знать основные правила и принципы, которыми следует руководствоваться при решении этого вопроса. Каждому строителю-специалисту и индивидуальному застройщику полезно знать:

Фундамент - весьма ответственная подземная конструкция здания, от которой зависят прочность, долговечность и устойчивость.

Основанием фундаментов должны служить материковые (не нарушенные) грунты, желательно плотные. На насыпных и просадочных грунтах без их предварительного уплотнения строить дом не рекомендуется.

Приступая к проектированию фундаментов. Необходимо иметь точные данные о грунтах основания (песчаные или глинистые, пучинистые или непучинистые, набухающие или просадочные), чтобы принять конструктивные меры, обеспечивающие надежность конструкции, допустимые равномерные осадки и прочность здания в целом.

В глубокой древности зодчие придавали важное значение изучению свойств грунтов основания здания, так как хорошо понимали, что небрежность в таком деле может привести к деформации строения и даже к аварии. Недооценивать физико-механические свойства грунтов и гидрогеологические условия района застройки весьма опасно. Серьезные аварии, участившиеся за последние 35 лет в отечественной практике строительства, убедительное тому доказательство.

Еще в I веке до н. э., 2000 лет назад, римский архитектор Витрувий в своих трудах особое внимание обращал на то, что ошибки и упущения, приводят к тяжелым катастрофическим последствиям для сооружений.

Архитектор Леон Баттиста Альберти (XV в.) сказал: «Рой на благо и на счастье, пока не дойдешь до твердого, и если в чем другом допущена ошибка, она менее вредит, легче исправляется и более терпима, нежели в основаниях, где нельзя допустить никакого извинения в ошибке"».

Выдающийся итальянский архитектор и строитель А. Палладио в трактате, написанном в 1570 г., придавая особое значение вопросам устройства фундаментов на прочном основании, писал: «Из всех ошибок, происходящих на стройке, наиболее пагубны те, которые касаются фундаментов, так как они влекут за собой гибель всего здания и исправляются только с величайшим трудом».

ПетрI в «Уложении по строительству» отмечал: «На устройство подошвы (основания) и поддела (фундамента) ни трудов, ни иждивения жалеть не надо». Однако при проектировании необходимо использовать наиболее рациональные конструкции фундаментов, позволяющие сократить построечную трудоемкость, расход материалов, сроки и стоимость производства работ.

Старинным правилом «на фундаментах не экономят» руководствоваться не следует. Расход материалов на фундаменты определяется расчетом и конст руктивными требованиями для каждого конкретного случая. Излишнее количество материалов –это дополнительные затраты овеществленного и живого труда, а следовательно, неоправданные материальные затраты.

Придавая важное значение проблемам ресурсосбережения и сокращения затрат живого труда, ученые и инженеры в настоящее время уделяют серьезное внимание совершенствованию конструкций фундаментов для малоэтажных зданий и технологии производства работ нулевого цикла.

Сокращение расхода материалов, трудоемкости и стоимости нулевого цикла одно-, двухэтажных зданий достигается за счет уплотнения естественного основания с целью увеличения несущей способности грунта, а также за счет применения эффективных конструкций фундаментов.

Задачей инженера, проектирующего фундаменты, является нахождение эффективного решения. Это возможно только при правильной оценке инженерно- экологических условий стройплощадки и работы грунтов основания совместно с фундаментами и надземными конструкциями, а также при выборе способа устройства фундамента, гарантирующего сохранность природной структуры грунтов основания.

За качество проектов в старину спрашивали строго. Указ Петра I гласил: «Всем чинам, на службе состоящим, а также мануфактур-советникам и прочим разных промысловых заведений персонам помнить надлежит –все прожекты зело, исправны, быть должны, дабы казну зряшно не разорять и отечеству ущерба не чинить. А кто прожекты станет абы ляпать, – того чина лишу и кнутом драть велю». Поэтому и стоят незыблемо добротные, красивые здания, построенные более 250 лет назад зодчими М.Казаковым, В.Баженовым, А.Воронихиным, А.Захаровым, С.Чеваскинским, Д.Трезини, К.И.Росси, Ф.Б.Растрелли, А.Ринальди, Монферраном, Кваренги, Камероном и др.

Совсем иная картина складывается в настоящее время при массовой застройке районов жилыми малоэтажными зданиями.

Как выявила проверка застройки нескольких коттеджных поселков Подмосковья, проектные работы, как правило, выполнялись в этих случаях неспециализированными организациями и без предварительных инженерно –геологических изысканий.

В результате этого фундаменты выполнялись без учета специфики грунтов, их свойств и действующих нагрузок, как от несущих конструкций дома, так и от действия сил морозного пучения (нормальные и касательные силы).

Не имея профессиональных знаний о грунтах и их свойствах, выбрать рациональную и устойчивую конструкцию фундаментов и избежать непредвиденных последствий просто невозможно.

Многочисленные примеры показывают, что деформации несущих и ограждающих конструкций (стен) домов происходят из-за ошибок, допущенных при устройстве фундаментов и вследствие морозного пучения глинистых грунтов.

Морозное пучение выражается, как правило, в неравномерном поднятии слоя промерзшего грунта, причем напряжения, возникающие в грунте при пучении, оказывают существенное воздействие на фундаменты и наземные конструкции здания. Особенно страдают от этого дома с подвалом, стены которого сложены из сборных блоков.

Строительство на песчаных грунтах исключает подобные последствия, так как пески относятся к несвязным грунтам, фильтрующим влагу. Поэтому строить проще и дешевле на песках.

На участках с глинистыми грунтами надежным основанием фундаментов являются песчаные подушки, отсыпаемые с послойным уплотнением.

Во всех случаях, прежде чем строить собственный дом, нужно знать геологические условия участка застройки, на какой глубине залегают прочные грунты и грунтовые воды.

Многие застройщики и сейчас расплачиваются за эти ошибки: у недостроенных еще загородных домов поднимаются и деформируются фундаменты из-за морозного пучения глинистых (пучинистых) грунтов, вследствие чего появляются трещины в стенах, грунтовые воды заливают подвальное помещение, стены которого сложены, как правило, из сборных блоков, и т. п.

Всему этому одна причина – фундаменты выполнены безграмотно – без учета специфики грунтов, без соблюдения норм проектирования. А это очень важно, так как стоимость фундаментов составляет примерно 1/3 расходов на возведение коробки здания.

Фундаменты малоэтажных зданий.

Экономичные фундаменты малоэтажных зданий и усадебных домов.

Причина высокой стоимости фундаментов малоэтажных и одноэтажных домов, строящихся сейчас повсеместно, заключается в том, что они выполняются из тех же типовых сборных блоков, которые применяются для фундаментов многоэтажных зданий в 9-12 этажей и более.

Несущая способность бетонных блоков при этом используется примерно на 10%, вследствие чего неоправданно возрастает расход бетона, стоимость фундаментов и 1 кв. м жилой площади.

К этому необходимо добавить рассредоточенность и малообъемность работ, а также удаленность объектов от баз строительной индустрии и низкий уровень механизации строительно-монтажных работ.

Сокращение расхода бетона и стоимости фундаментов малоэтажных зданий является весьма актуальной проблемой в настоящее время, так как только в Московской области до 2000 г. было построено 145 200 коттеджей общей площадью 16 млн.кв.м.

Ленточные фундаменты жилых и общественных зданий с подвалом, а также производственных зданий без подвала, являющихся наиболее распространенными в практике проектирования и строительства, выполняются, как правило, сборными вне зависимости от этажности. Однако при этом не учитывается, что сборные фундаменты имеют существенные недостатки, весьма негативно влияющие на качество конструкции фундамента в целом. На это никогда не обращали внимания проектировщики, ни строители. Сборочные ленточные фундаменты массивны и не экономичны, так как по существу – это монолитные фундаменты, разрезанные на мелкие элементы –блоки, но только дороже и хуже качеством ввиду большого количества швов и местных заделок, выполняемых вручную. Вследствие этого значительно возрастают трудозатраты на устройство фундаментов, а, следовательно, –сроки выполнения нулевого цикла в целом. При ленточных фундаментах устройство подвала или подполья в усадебных домах оправдано не только конструктивно, но и экономически, так как дополнительные затраты, связанные в этом случае с выполнением цокольного утепленного перекрытия, в 3-5 раз меньше тех затрат, которые требуются, чтобы получить такую же полезную площадь в специально построенном для этой цели помещении. Высота подвала в этом случае принимается минимальной –1,8-2,0 м.

По традиционно принятой у нас технологии работ нулевого цикла сначала возводятся ленточные фундаменты, а потом – бетонная подготовка под полы подвала по насыпному грунту, так как уровень пола располагается выше подошвы фундаментов на 75-90 см и более (в зависимости от толщины плит, подушек и глубины заложения). Такая конструкция фундамента и традиционная технология выполнения работ увеличивают трудоемкость нулевого цикла, так как это связано с дополнительными трудозатратами на устройство обратной засыпки котлована с ее уплотнением во избежание полов подвала в период эксплуатации.

Кроме того, что такая технология увеличивает трудоемкость производства работ, она не обеспечивает и эксплуатационную надежность полов подвала ввиду неизбежности просадок насыпных грунтов, уплотняемых без применения трамбовок. На наших стройках их нет, и это пагубно отражается на качестве работ по уплотнению грунтов. Деформируемые вследствие этого полы подвала по насыпному грунту зачастую приходится ремонтировать или выполнять заново, что связано с дополнительными материальными затратами в период эксплуатации здания и с определенными трудностями. По этой же причине деформируются и отмостки вокруг здания, и ливневые стоки замачивают основания фундаментов.

Во всех цивилизованных странах пневматические трамбовки применяются в строительстве уже более 75 лет. Избежать этих недостатков и сократить трудоемкость и стоимость нулевого цикла можно лишь в случае устройства фундаментов в виде сплошной железобетонной плиты, выполняющей одновременно функции фундамента и пола подвала, как это принято для зданий повышенной этажности.

Для деревянных и кирпичных малоэтажных зданий и усадебных домов стены подвалов целесообразно выполнять бутобетонными переменного сечения, глубина заложения которых для центральных районов принимается в 1,30-1,45 м при расположении пола на 0,90 или 1,05 м выше уровня планировочных отметок и 1,60-1,75 м при разнице между полом и землей 0,75-0,60 м.

Стены подвала, во избежание их промерзания и теплопотерь, необходимо изнутри укрепить листами пенопласта толщиной 20 м на битумной мастике с последующим оштукатуриванием по сетке - рабице. Такие фундаменты на 20-25% экономичнее традиционных ленточных по расходу бетона и трудозатратам. Это особенно важно для индивидуальных застройщиков в современных условиях высокой стоимости стройматериалов.

Усложнение формы цоколя здания в данном случае оправдывается сокращением расхода материала (бетона) и стоимости, а также улучшением внешнего вида здания.

Глубина заложения фундамента принимается в зависимости от глубины сезонного промерзания грунта и уровня грунтовых вод. Глубина заложения подошвы фундаментов, м, принимается: для Астрахани, Минска, Киева и Вильнюса –1,0;для Курска, Харькова и Волгограда –1,2;для Москов.обл., Воронежа, Санкт-Петербурга и Новгорода –1,4; Вологды, Саратова и Пензы –1,5; для Ульяновска, Самары, Казани и Котласа –1,7; для Актюбинска, Уфы и Перми –1,8; для Кустаная, Кургана и Ухты –2,0.

Фундаменты предлагаемой конструкции необходимо выполнять с устройства железобетонной плиты – пола подвала. В этом случае конструкция пола выполняет еще и функцию несущей плиты фундамента, на которую опираются стены подвала. Толщина стен подвала в этом случае принимается в зависимости от климатических районов, но не тоньше 30 см. Стены подвала лучше всего делать монолитными, так как они почти водонепроницаемы и почти вдвое дешевле сборных. Бетонирование стен необходимо выполнять с помощью добротной строганой опалубки, чтобы после распалубки не выравнивать поверхности стен штукатуркой или затиркой.

Вертикальная гидроизоляция выполняется битумной мастикой, которой обмазываются наружные поверхности стен в два приема. Защитить подвал от попадания влаги (когда это неизбежно) можно при помощи глиняного замка из мягкой глины. Этот способ оправдал себя на протяжении многих столетий и успешно применяется в настоящее время.

Плита –фундамент принимается толщиной 20-25 см и армируется сеткой с ячейкой 15х15 см или 10х10 см из арматуры 10АIII или 8АIII.

Бетонирование плиты производится по бетонной подготовке (100 мм) или гидроизоляции из двух слоев толя или рубероида, которая препятствует поднятию капиллярной влаги и сохраняет цементное молоко бетонной смеси при бетонировании. В условиях песчаных или супесчаных грунтов устройству гидроизоляции предшествует уплотнение грунтов основания щебенкой, политой битумной мастикой. Бетон плиты в этом случае не обезвоживается и сохраняет свои свойства – прочность и плотность, что очень важно для конструкции фундаментов.

Такое конструктивное решение и рекомендуемая технология возведения фундаментов малоэтажных домов с подвалом дают возможность сократить расход бетона на 25% по сравнению с традиционным решением. Сокращается при этом на 20-25% и объем земляных работ за счет исключения уширенной части фундамента. В результате значительно снижаются трудоемкость и стоимость нулевого цикла, что весьма важно для индивидуальных застройщиков.

В отдельных случаях, когда это необходимо, гидроизоляция стен подвала может быть и оклеечной с прижимной кирпичной стенкой. В этом случае сначала выкладываются кирпичные стенки толщиной в полкирпича, которые изнутри обклеиваются 2-3 слоями рубероида. В дальнейшем выполняются монолитные стены подвала с применением только внутренней опалубки, а в качестве внешней используются кирпичные стенки, оклеенные рубероидом. Такая технология гарантирует надежность и высокое качество гидроизоляции.

Сокращение расхода материалов и трудозатрат нулевого цикла малоэтажных зданий и домов усадебного типа достигается при выполнении стен подвала сборно – монолитными из блоков толщиной 30 см. Для опирания стен толщиной 51 и 64 см предусматривается монолитный пояс (ростверк) сечением 30х50 или 30х65 см. Для стен толщиной 38 см монолитный пояс армировать не требуется. Устройство таких фундаментов упрощается, так как при этом исключается перевязка швов и местные заделки бетоном и кирпичом в местах отверстий и проемов, оставляемых для ввода коммуникаций. Для ввода трубопроводов в монолитных участках закладываются входные патрубки. Расход бетона в этом случае сокращается на 33%, а стоимость –в 1,5 раза ниже по сравнению с вариантом из блоков толщиной 50 см, так как более половины сборных блоков заменяется монолитным бетоном, который значительно дешевле сборного. Водопроницаемость стен подвалов при обмазке их битумной мастикой в этом случае почти исключается.

Утоненные сборно-монолитные фундаменты выполняются по сплошной железобетонной плите, которая несет функцию фундамента и пола подвала. Совмещение функций конструкции пола подвала и плиты-фундамента экономически целесообразно, так как при этом не требуется уширение подошвы при минимальной толщине стены подвала.

Утоненные сборно-монолитные фундаменты технологичны и эффективны и для 5- и 9-этажных зданий, но по стоимости все же уступают монолитным. При высокой цене материалов такое решение будет способствовать сокращению их расхода и снижению стоимости и сроков нулевого цикла при улучшении качества.

Широкое внедрение ресурсосберегающих технологий и конструкций при массовом строительстве малоэтажных зданий обеспечит выполнение поставленных задач.

Применение ленточных фундаментов целесообразно и для зданий без подвала, строящихся на сухих не пучинистых(песчаных) грунтах. Глубина заложения фундамента в этом случае, вне зависимости от климатических условий, принимается менее 1 м. На глинистых или пучинистых грунтах (при глубине заложения более 1м) ленточный фундамент проще и дешевле выполнить по песчаной подушке.

Предисловие

Бутовый фундамент – это основание под строение, практически на 90 % выполненное из бута. Основные преимущества фундамента из бутового камня заключаются в экономии строительного материала, эстетической привлекательности и, самое главное, - надежности.

Необходимые инструменты и материалы

Бетономешалка Ведро Вода Камень Кирка Лопата Лопатка перфоратора Мастерок Перфоратор Удлинитель Цемент

Развернуть

Cодержание

Бутовый фундамент – это основание под строение, практически на 90 % выполненное из бута. Основные преимущества фундамента из бутового камня заключаются в экономии строительного материала, эстетической привлекательности и, самое главное, - надежности. Каменные фундаменты для дома возводятся несколько столетий, и столь многолетняя практика использования бута говорит в пользу этого материала сама за себя.

Любая постройка начинается с закладки прочного фундамента, экономить на котором никто не советует. По используемым материалам фундаменты делятся на шесть типов: песчаный, кирпичный, бутовый, бетонный, блочный, железобетонный. В старину дома возводились на каменных фундаментах, в которые старались укладывать большие камни блокоподобных или блоковых форм. Камни этих фундаментов почти всегда превышали размеры бутового камня, поэтому их правильно называть просто каменными фундаментами. Такие фундаменты являются самыми древними и сейчас их делают редко. Каменные фундаменты - 7 тип существующих фундаментов, который по праву должен числиться под номером 1. Самыми же надежными домами являются те, которые возведены на вечных фундаментах - на скальных породах, где фундаментом является сама скала. Но это уже не фундамент как таковой, а природное основание.

Разница между каменной и бутовой кладке фундамента состоит в размерах применяемых для них камней. Как известно, бутовый камень по своим размерам доходит до 50 см. Камни размерами более полуметра являются глыбами, блоками (большими), валунами и т.д. - в зависимости от своих форм и масс. Поэтому при кладке бутовых фундаментов, если в наличии имеются камни разных размеров, то почему бы не использовать их все, не особенно утруждая себя тем, как правильно будет характеризоваться такой фундамент.

Как сделать ленточный каменный фундамент

По своей конструкции фундаменты подразделяются на столбчатые, ленточные и плитные. Каменные фундаменты могут быть либо ленточными (непрерывными), либо плитными - к примеру, состоящими из нескольких вкопанных блоков под углами домика. Ленточные каменные фундаменты закладываются под дома с тяжелыми плитами перекрытий и тяжелыми стенами. Ленточная конструкция фундамента берет на себя максимальную нагрузку от здания.

Фундаменты из камня требуют к себе, с одной стороны, серьезной ответственности, с другой - не самой сложной подготовки и опыта исполнителя. Фундаменты из гранитного бута, булыг, валунов, глыб или блоков являются одними из самых надежных, особенно, если они делаются в пучинистых грунтах (глинистых, суглинистых, супесных, а также пылеватых песках). Такие грунты коварны тем, что при жаркой погоде они сжимаются, а при промерзании, особенно, если после дождей - вспучиваются, резко меняя свои объемы. При этом силы, которые действуют на фундамент, достигают 6-10 тонн на один квадратный метр фундамента.









Перед тем как сделать каменный фундамент, на выбранном участке выравнивается поверхность, затем делается разметка контуров будущего фундамента. Контуры фундамента обозначают прочным шпагатом, натянутым над землей и привязанным к вбитым колышкам.

Иногда эту операцию заменяют устройством обноски - ряда столбиков с прибитыми поверху досками. Обноска должна быть немного выше будущего предполагаемого цоколя и в метре-полутора от внешних краев траншей, вырываемых под фундамент. Обноска может быть как непрерывной, так и частичной, вокруг углов будущих стен. В этом случае обноска удобно заменяет колышки, которые нужно вбивать в грунт для натягивания шпагатов (или лески), так как теперь шпагаты можно будет удобно фиксировать на досках обноски и проверять правильность направлений и размеров контуров фундамента и его углов.

Точно отметить углы фундамента (соответственно стен здания) под 90° поможет знание так называемого «египетского треугольника», в котором соотношения сторон равны 3:4:5 метрам. Такой треугольник делается с помощью натянутых шпагатов соответствующих метражей или сбивается из реек, досок.

Одинаковость вертикальных отметок по верхам углов будущего фундамента (нулевой цикл) проверяется с помощью водяного уровня.

После разбивки фундамента и тщательной проверки размеров, точности углов фундамента и ширины его стен (которые могут быть шире стен дома на 20-30 см) приступают к выемке грунта. Немного прокопав траншеи фундамента, можно снять мешающий работе шпагат разметки.

Фундаменты под дома закладываются ниже уровня промерзания грунта. Глубина такого фундамента зависит от этажности будущего дома и характера грунта.

После выемки грунта дно траншей нужно засыпать песком. Толщина слоя песка должна быть не менее 10 см. Затем, пользуясь плодами современной цивилизации, дно и стены траншей можно простелить пленкой ПВХ или простой полиэтиленовой пленкой так, чтобы края кусков пленки заходили друг на друга внахлест на 30 см. При этом пленку можно укрепить на бровке траншей камнями или кирпичами (придавить). Такая операция позволит продлить срок целостности фундамента фактически на столетия, так как целлофан избавит фундамент от более сильного сцепления с пучинистым грунтом и грунтовыми водами, а также позволит сохранить в основании все укрепляющие фундамент компоненты. Чтобы пленка, уложенная в траншеи, не топорщилась, ее можно сразу придавить большими камнями враспор.

Если решено делать фундамент без пленки, то на слой песка, который должен закрывать дно траншеи (подушку), следует насыпать пятнадцатисантиметровый слой гравия (дренирующий слой).

Затем в работу идет обмытый камень. При укладке первых камней сперва нужно нанести на дно траншеи (поверх гравия или пленки) слой раствора в 5-8 см. Первые камни нужно начинать укладывать с углов, они должны быть побольше размерами и желательно блокоподобных форм.

Самой большой плоской своей стороной - постелью - камень укладывается на нанесенный раствор. Имеющийся блокоподобный камень с подходящим углом в 85°- 95° укладывается в наружный угол траншеи, он становится так называемым краеугольным камнем. Камень кладется впритык (враспор) к стене траншеи. Уложив краеугольные камни, можно производить укладку первых больших камней вдоль всей траншеи, располагая их враспор - впритык то к одной стенке траншеи, то к другой - противоположной. Пустоты между камнями нужно закладывать меньшими камнями, стараясь подгонять их впритык друг к другу. Швы между камнями заполняются раствором марки 100-150. Так укладывается первый ряд камней будущего фундамента, который должен иметь приблизительно одну высоту. Камни, равные по своей длине размеру ширины траншеи, укладываются тычком - поперек траншеи на всю свою длину. Если камней с размерами ширины траншеи большое множество, то первый ряд фундамента (его подошва) укладывается тычком.

Устройство бутового фундамента своими руками (с фото и видео)

Для устройства бутового фундамента используются камни с несущей способностью не ниже 100 кг/см2. Укладка бутового и другого камня - процесс осмысленный, поэтому делая одно (например, фундамент), следует заранее подумать о других работах, которые потребуют более ровный или более красивый камень.



Такой камень следует сразу отбирать в отдельную кучу. К таким относятся все камни, имеющие ровные стороны, более яркие расцветки или прожилки в расцветках, или кварцевые вкрапления, а также камни с ровными углами; камни, напоминающие многоугольники.

Делая фундамент из бута своими руками, большие камни, нужные для первого ряда каменной кладки фундамента, можно сбрасывать в траншею там, где траншея еще не застелена пленкой, а затем кантовать их к месту укладки; либо опускать их на руках.

Ознакомьтесь с видео устройства бутового фундамента, чтобы лучше понять технологию процесса:

Фото бутового фундамента представлены ниже:

Арматура для фундамента с бутовым камнем

После укладки первого ряда камней начинается установка арматурного каркаса, аналогичного каркасу в бетонных фундаментах: арматура вяжется в два слоя на протяжении всего фундамента, внахлест до 50 см. На углах желательно вязать согнутую Г-образно арматуру. Диаметр арматуры нужно выбирать в зависимости от высоты будущей постройки. Для одно-двухэтажного дома достаточно диаметра 10 мм. Арматура вяжется на вертикально устанавливаемые пруты. Расстояние вертикальных арматурин (стоек) друг от друга не должно превышать двух метров. Если арматура будет мешать стоять камнекладчику в траншее, то ее нужно будет вязать поэтапно: сперва уложив камнями траншею до середины, затем нужно будет привязать новые две арматурины на все стойки и продолжить укладку камня почти до верха траншеи. Затем арматура вяжется последний раз - верхние две арматурины на все стойки. Таким образом, в целом получается, как минимум, три горизонтальных ряда по две арматурины в каждом. При виде сверху каждые две арматурины бутового фундамента любого ряда образуют в целом два слоя - передний и задний (или фронтальный и тыльный).

Все укладываемые камни должны осаживаться кувалдочкой до полного утопления их в растворе и упирания в нижележащие камни. При этом не следует забывать о правилах перевязки камней. То есть, по возможности все вертикальные швы ниже уложенных камней должны перекрываться вышележащими камнями.

Как сделать бутовый фундамент (фундамент из бута) своими руками





При укладке бутового фундамента своими руками следует заранее подумать обо всех коммуникациях современного дома: водопроводные и канализационные трубы, заземление, провода сигнализации и домофона и т.д. Под все эти вещи необходимо сразу оставлять отверстия - закладывать трубы или деревянные кругляки, которые легко сверлятся; либо наполненные водой пластиковые баклажки, также легко удаляющиеся впоследствии. Из последних, после затвердения фундамента, воду нужно слить. Армирование каменного фундамента придает ему большую прочность и надежность. Арматурный каркас может быть прокрашен грунтовочной масляной краской. Вяжется арматура миллиметровой вязальной (упаковочной) проволокой с помощью крючков-воротков.

Уже имея представление, как сделать бутовый фундамент, последующие ряды камней укладываются аналогичным способом, идентичным с возведением стен из камней.

Если цоколь над фундаментом с бутовым камнем планируется делать из блокового камня или кирпича, то высота всего фундамента должна быть одинаковой - в горизонте, который называется «нулевым циклом». Затем на фундамент кладется гидроизоляционный слой в виде рубероида. Второй гидроизоляционный слой кладется на возведенный цоколь. Полиэтиленовую пленку с бровки траншеи нужно завести на 5 см под рубероид первого гидроизоляционного слоя (обрезав лишнее).

Бутовой фундамент без армирования

Кладку фундамента из бутового камня можно делать и без армирования: в таком случае фундамент будет менее надежен и неустойчив к сейсмическим воздействиям, но все же вполне пригодным для возведения на нем одноэтажного дома в сейсмоопасной зоне. В противном случае ненадежный фундамент ведет к образованию трещин в стенах дома и последующему его разрушению.

На фундаменте экономить нельзя! Минимальная толщина каменного фундамента должна быть 50 см. Готовому фундаменту нужно дать время для усадки и набора прочности. Для этого фундамент оставляют на зиму, а последующие работы начинают весной.

Найти остатки древнего каменного храма для археолога - большая удача. Иногда раскапывают постройки, о которых что-то известно. К примеру, старожилы помнят, что раньше здесь была церковь, или летописи четко указывают на конкретное место.

Однако иногда остатки храма находят совершенно случайно - в ходе разведочных раскопок или даже просто строительных работ. При этом чаще всего от церкви остается только фундамент или даже того меньше - фундаментный ров. В этом случае обычно нет никакой возможности узнать из внешних источников, что это была за церковь, когда она построена и какому церковному празднику была посвящена.

И всё же археологи могут, изучив постройку на месте, многое узнать о ней. Строительная техника, в которой выполнен памятник архитектуры, дает возможность установить период, в котором он был построен, иногда с точностью до нескольких десятилетий.

Кроме того, изучение фундамента позволяет высказать предположение о наиболее вероятных датах закладки храма. А поскольку церковь нередко закладывалась в день того святого или праздника, которому была посвящена, это дает возможность предположить посвящение храма, а иногда даже связать находку с письменными источниками.

Задача

Каким образом изучение фундамента древней церкви может помочь узнать наиболее вероятные дни ее закладки?


Подсказка

Традиции древнерусской архитектуры требуют, чтобы алтарь храма был обращен на восток.

Решение

Закладка древнерусской церкви - это важный и торжественный момент. Насколько мы можем судить, во время закладки присутствовали высшие лица духовной и светской власти, которые часто были заказчиками постройки.

Выдающийся историк архитектуры Петр Александрович Раппопорт в своей книге «Строительное производство древней Руси (X–XIII вв.) приводит две цитаты из летописей и хроник, разделенные почти 10 веками.

«Затем устанавливают один камень в качестве основы церкви в центре алтаря, а остальные невыделенные камни - по четырем углам... Епископ читает сию молитву... и повелевает главе мастеров взять измерительный инструмент и расчертить местность по воле строител я». Это - из армянского «Основания святой церкви» начала VI века.

«...Преосвященный митрополит Филипп со всем освященным собором... поидоша на основание церкви... Прииде же тако и... великий князь Иван Васильевич... И тако совершившие молебная, и прежде всех своима рукама митрополит начало полагает, идеже олтарю быти, таже по странам и по углам, и по сем мастеры начинают дело зданию ». Это - из московской летописи XV века.

Как мы видим, на протяжении многих веков, закладка христианской церкви проходила одинаково - закладывался камень на место будущего алтаря, размечались контуры стен и углов храма. На земле появлялся план будущей постройки.

Как уже говорилось в подсказке, по традициям древнерусской архитектуры алтарь храма должен был быть обращен на восток. Однако в Древней Руси не было компасов, и восток понимался как место, где восходит солнце.

Но солнце точно на востоке восходит только два раза в году - в день весеннего и осеннего равноденствия. В другие дни солнце восходит севернее или южнее точного направления на восток. При закладке храма (читай - при разбивке его плана) ось будущей постройки ориентировали на точку восхода солнца. Таким образом, измерив ориентацию храма по компасу (магнитный азимут), сделав поправку на магнитное склонение места, где расположен храм, можно по таблицам вычислить угол склонения солнца и два дня, в которые солнце восходит именно в этом месте. После чего остается сделать поправку на древний юлианский календарь (для X–XI века - 6 дней, для XII-го – 7), и археологи получают две возможные даты закладки храма, а исходя из того, что заложение первого камня обычно происходило весной-осенью (чтобы строительная артель смогла выполнить первый цикл работ до осенних дождей - отрыть фундаментные рвы, заложить сам фундамент и сделать кирпичную вымостку поверх него) - можно выбрать одну из двух дат.

Послесловие

Памятников домонгольской каменной архитектуры на нынешний день известно немногим более 250. При этом в том или ином виде на поверхности земли сохранилось менее пятой части этих построек. Абсолютное большинство из них — церкви.

Древнерусский каменный храм был для тогдашнего человека всем — клубом, библиотекой, учебником Закона Божиего, несгораемым сейфом (в подвальных этажах церквей часто хранились драгоценности — ведь только каменные храмы выживали в пожарах).

Очень много значит храм и для исследователя культуры Древней Руси. Любой памятник древнерусской архитектуры — это не только материал для историка архитектуры. Это и памятник живописи, и языка (все древнерусские храмы, на которых сохранились остатки штукатурки, хранят сотни записей-граффити, сделанных самыми разными людьми). Поэтому очень важно «выжать» из памятника всю возможную информацию — и поэтому так важно иметь возможность хотя бы предположить, когда заложен храм и кому он посвящен.

Разумеется, метод определения даты закладки храма по азимуту имеет свои ограничения.

Во-первых, очень сложно измерить азимут постройки с точностью, большей, чем в 1-2 градуса — сами планы церквей разбивались с некоторой неопределенностью.

Во-вторых, все расчеты проводятся для идеального горизонта, без учета рельефа, который вносит дополнительную погрешность.

В-третьих, далеко не всегда дата заложения церкви совпадает с датой церковного праздника, которому посвящен храм. Изучение летописных известий о строительстве храма говорит о том, что гораздо чаще с датой праздника совпадало торжественное освящение церкви после окончания строительства или даже росписи храма.

В-четвертых, иногда храм вообще не ориентировали на восход — если на ориентацию храма влияла уже сложившаяся уличная застройка или храм закладывали на более древнем фундаменте.

И тем не менее иногда, даже не имея никаких летописных сведений о найденном памятнике архитектуры, можно с достаточной степенью уверенности говорить о его посвящении. В первую очередь, тогда, когда азимут постройки выдает необычную зимнюю дату закладки храма. К примеру, смоленская церковь в устье реки Чуриловки обращена алтарем на юго-восток. Азимут показывает, что храм был заложен около 19 февраля, что весьма близко к дню Константина-Кирилла (14 февраля). Именно зимняя закладка может свидетельствовать о том, что церемонию заложения храма хотели непременно провести в день небесного патрона церкви, а само строительство начать позже, весной.

Фундамент , как основу в строительстве дома начали возводить еще в глубокой древности. Одновременно с развивался процесс строительства. Среди фундаментов возводимых в древности важное место занимали свайные постройки, которые устраивались в устьях рек. Данные постройки предназначались для защиты от зверей и врагов. В дальнейшем предназначение свай изменилось, однако они широко и долго применялись. Строения, возведенные на хороших основаниях, отличаются большой долговечностью. По настоящее время некоторые из них сохранились и продолжают свое существование. Пример: пирамида Хеопса. ее вес около 6 млн. тонн, на основание нагрузка составляет в среднем - 12 кг/см2.

В глубокой древности уже имелись труды по фундаментостроению, а именно: римский инженер Витрувий (первый век до н.э.) в своих трудах дал указание по практическому возведению фундаментов. Кроме того, в древних летописях нашей страны, также найдены рекомендации по возведению фундаментов. Однако все данные ученых были основаны только на основании опыта возведения фундаментов. Однако не существовало никаких теоретических основ расчета фундамента и оснований. В XVIII веке наука сильно шагнула вперед в данном вопросе, появились долгожданные теоретические разработки науки по фундаментостроению. Французский ученый Кулон в 1773 году вывел теорию расчета сопротивления грунтов сдвигу, и формулу для расчета давления грунта на подпорную стенку. После этого в 1841 году великий французский ученый Трижо предложил один из способов возведения кессонных фундаментов . Далее в XIX веке был открыт , который стал основным звеном при строительстве фундаментов. В 1809 году одним из ученых было открыто явление "электроосмоса". Данное явление заключалось в том, что вода и ее частицы двигаются в направлении отрицательного заряда. В последствии это явление нашло свое практическое применение в основаниях для разработки котлованов, где были водонасыщенные грунты. Кроме того, наши ученые а именно: киевский ученый А.Э. Страус в 1899 году предложил использовать в строительстве набивные сваи , которые устраиваются в пробуренных скважинах. Этот же ученый позднее предложил опускать арматуру в скважины, после чего заливать их бетоном. Одним из первых научных трудов "Основания и фундаменты " был написан в 1869 году. Автором данной работы был Карлович, который привел все известные положения. Довольно большой вклад был сделан в развитии науки об основаниях и фундаментах после окончания Октябрьской революции. В 1929 году образовался сектор оснований и фундаментов, который был в дальнейшем преобразован в институт оснований и фундаментов.

Теперь разберем наиболее доступные способы устройства фундамента , применимые для малоэтажных жилых домов в древние времена.

Мастера в древние времена устанавливали сруб дома на большие камни, а промежутки между ними тщательно заполнялись мелкими камешками, щебнем. После этого, их обмазывали обычной глиной, которая очень хорошо изолировала подпол или подвальные помещение от холода и ветра. Возникала одна проблема, это процесс вентиляции подпола. Данное обстоятельство служило причиной повышенной влажности в доме и гниения сруба.

За многие годы и века учеными практиками в сфере строительства фундаментов домов постигнуто множество, на первый взгляд, несущественных тонкостей и важных деталей, которые сохраняют свою актуальность по сегодняшний день.

Здравствуйте, уважаемые читатели!

Предупреждала же, что о Монферране непременно вспомнится:о)

«Постройки, помещаемые под зданием, и не приносящие никакой непосредственной пользы, но предназначенные только для принятия на себя всего груза строения и для передачи его материку, называются основанием строения.
Оно состоит из двух частей:
1. укрепления подошвы здания
2. фундамента.
Фундамент — есть нижняя часть строения, простирающаяся ниже поверхности земли до встречи с земным пластом, который способен сопротивляться давлению, производимому грузом строения.
Верхняя поверхность грунта, соприкасающаяся с нижнею поверхностью фундамента, та поверхность, по которой давление фундамента передаётся земле, называется подошвою здания.» (Красовский А. «Гражданская архитектура. Части зданий. 1886г)

Поскольку речь зашла о том, как был построен памятник Александру II в самом конце XIX века, то для понимания сложности решённой зодчими инженерной задачи по сооружению основания памятника я приведу предыдущий опыт строительства в России.

Взгляд из нашего времени:

«Как правило, информация о конструкции фундаментов и, тем более, об их техническом состоянии, в исторических чертежах отсутствует. Архитекторы прошлых столетий, за редким исключением, фундаменты на чертежах не изображали. Назначение конструкции, материалов, основных размеров фундаментов было прерогативой подрядчика, который опирался на вековую традицию, собственный опыт. Качество фундаментов во многом зависело от порядочности подрядчика, как профессионала. Тип фундамента определялся массой здания, грунтовыми условиями площадки, о которой не всегда имелась достаточная информация, набором местных материалов.

По указанным причинам до 60-х годов 20 века обеспечить зданиям безосадочное основание было технически не возможно, поскольку деревянные сваи не могли быть длиннее 12 м. Пример Исаакиевского собора подтверждает сказанное. Известно, что это здание, размерами в плане примерно, 100х100 м, имеющее массу около 3000000 кН, построено на фундаменте в составе которого 24000 деревянных свай и сплошная плита из природного камня, заглубленная в грунт на 5 м. Затраты на этот фундамент были весьма велики: по смете, имеющейся в архиве, они составили 10% затрат (2 млн. рублей серебром). Несмотря на это осадка здания превысила 1 м, разность осадки, выразившаяся в форме крена полов здания достигла почти 40 см
Износу подземных конструкций зданий способствовали и такие факторы, как неуправляемый рост культурного слоя, высокий уровень грунтовых вод и силы морозного пучения грунтов, вибрации, вызванные транспортными нагрузками, строительством, промышленностью.
Первые 100-120 лет со дня основания города фундаменты «казенных» зданий строились особенно тщательно. В траншеи, окопанные под ленточные фундаменты стен несущих, стен забивались деревянные сваи, по верх которых выполнялась кладка фундаментов. Именно так были построены фундаменты стен Петропавловской крепости, Петропавловского собора, Ростральных колонн, Александровской колонны, Исаакиевского собора, многих других. Некоторые здания (пример-Зимний дворец, Новый Эрмитаж) были построены на сплошных плитах

По поводу Исаакиевского собора до сих пор публикуются всевозможные вымыслы с «недоумениями». Поэтому я привожу описание его фундамента из книги 1869 года издания

из которой ниже ещё будут цитаты:о) https://нэб.рф/catalog/00…

Попутно сообщу всем, кто ещё не в курсе, что строительные чертежи начала XIX века (то есть времени строительства Исаакиевского собора и сооружения Александровской колонны) значительно отличались от чертежей нашего времени . Поэтому, прежде, чем заявлять, что опубликованное Монферраном в его альбомах не является чертежами, прошу ознакомиться с другими чертежами того же времени. Итак, перед вами чертёж из книги «Практические чертежи по устройству церкви Введения во храм пресвятыя Богородицы в Семеновском полку в. С.-Петербурге, составленные и исполненные архитектором профессором Академии художеств… Константином Тоном » Тон К.А. 1845 г.

Здесь можно узнать, что основание было укреплено (уплотнено) забивкой свай, поверх которых был устроен бутовый ростверк. (вспоминаем Исаакий). На чертеже имеется масштабная линейка, чертёж копра для забивки свай. Сравниваем с чертежом Монферрана. Александровская колонна:

Исаакиевский собор

Попутно можем сравнить и чертежи куполов, сделанные Тоном

и Монферраном

Как видим, и тут на основание и на устройство фундамента обращается внимание. В данной книге мы тоже обнаруживаем такие же чертежи, как и чертежи Монферрана. То есть, когда кому-то из вас захочется вдруг заявить, что чертежей строительства Исаакиевского собора нет, вспомните, что для начала следует познакомиться с тем, какими были чертежи начала и середины XIX века, чтобы не «видеть в книге фигу» :о))).

Читая книгу адъюнкт-профессора Карловича, можно убедиться, что в конце XIX века инженерами в России был накоплен большой опыт строительства сооружений, была разработана методика разсчёта сооружений, способы определения механических характеристик грунтов и строительных материалов. Поэтому, встретив чертёж фундамента памятника Александру II, я поняла, что о его сооружении нужно писать отдельно.

Разсказывает архитектор памятника Н.Султанов:

«Во исполнение Высочайшего повеления, с 20-го июня 1890 года Комитет приступил к устройству временных сооружений по постройке памятника и к земляным работам на месте будущего фундамента. Начало земляных работ, как мы уже говорили, обнаружило присутствие фундаментов древних зданий, а также остатков старинных кладбищ. Обстоятельство это тотчас же заставило заменить обычные земляные работы правильными археологическими раскопками, что дало возможность приобрести множество драгоценных остатков старины. Раскопки продолжались всё лето 1890 года, причём выемка земли была произведена до глубины 2-х сажень, то есть до подошвы древних фундаментов. Площадь, занятая раскопками, была длиною около 60 и шириною около 20 саж., или, приблизительно, 1.200 квадр. сажень…»

Немного по истории о сносе зданий Кремля и приказов, остатки которых были найдены на месте строительства памятника Александру II.

Бартенев «Большой Кремлевский дворец, дворцовые церкви и придворные соборы» https://нэб.рф/catalog/00…

Весною 1891 года земляные работы были возобновлены и продолжались до августа, и произведены сперва до уровня горизонта нижнего Кремлевского сада, а после зимнего перерыва, к началу весны 1892 года - доведены до горизонта, лежащего на 4 аршина ниже уровня Кремлевского сада, причем был найден материк, вполне надежный и пригодный для основания фундамента боковых частей. памятника. Эта продолжительность земляных работ обусловливалась тем обстоятельством, что нужно было вынуть земли более б,5 тыс. куб. сажень и сложить ее на верху горы, следовательно поднимая ее на высоту 8 сажень.»

Чем более углублялась выемка грунта, тем яснее становилось, что необходимо дорабатывать проект памятника, ибо «… выяснилось, что если поставить памятник так, как он показан на генеральном плане, представленном вместе с моделью на Высочайшее утверждение в мае 1890 года, то на хорошем грунте будет стоять лишь задняя стена памятника, средняя же часть (фундамент под сенью) будет стоять на нём лишь наполовину, а передняя стена памятника, ближайшая к реке, придётся на наносном, никуда негодном грунте, и потребует очень глубокого и сложного фундамента, крайне дорого стоящего. Всё это требовало Высочайшего одобрения или разрешения… «

Когда были готовы эскизы статуи, императору для разсмотрения были представлены вместе с ними и видоизменённая модель, и разрезы памятника и грунта. Императора уведомили о затруднениях, и он, подробно всё разсмотрев, разрешить соизволил: ≪дабы все стены памятника стояли на хорошемъ материке, вдвинуть его въ глубь горы на четыре сажени, а получающіяся при этомъ лишнія части откоса горы срезать и съ боковъ закруглить≫ . Таким образом возникшие недоразумения были разрешены, и можно стало приступать к дальнейшему производству работ. Утверждённый эскиз статуи и видоизменённая модель памятника все время его строительства хранились в конторе постройки, a разборки конторы были переданы на временное хранение в Исторический Музей.

«Памятник Александра Ивановича II как по условиям своего проектирования, так и по своей значительной высоте — тридцать одна сажень от подошвы кессона до вершины орла-представляет собой очень сложное сооружение. В нём выделяются совершенно определённо три составные части:
1) Основание и фундаменты.
2) Подножие памятника или терраса, и
3) Верхнее строение, т. е. Галлереи, входы и средняя сень.
Для большей ясности мы рассмотрим каждую часть в отдельности
а) Основание и фундаменты.
К концу августа 1891 года выемка земли была доведена до уровня нижнего Кремлёвского сада и на этом остановлена. Дальше продолжать было нельзя, ибо, в виду наступающего осеннего времени, фундаменты начинать было поздно, а, — как мы уже говорили - для весенних вод надо было оставить свободный сток. Если бы дно выемки было ниже Кремлёвского сада, то весенние воды заполнили бы её и разрыхлили материк, что могло вызвать безполезное углубление выемки. Кроме того нужно было произвести бурение для окончательного выбора системы основания.

(цитаты из книги Карловича)

Фундамент памятника мог быть расположен двояко: или большими уступами, соответствующими скату; или на одной горизонтальной площади, врезывающейся внутрь горы.
Первое устройство было бы гораздо дешевле, второе - несравненно надёжнее. Кроме того, изучение фундаментов открытых древних зданий показало нижеследующее: все поперечные стены, перпендикулярные к гребню горы, были разорваны поперёк, а крайняя к гребню продольная стена имела отклонение верхним концом внаружу. Всё это показывало, что составные части горы не выдерживали груза даже сравнительно невысоких зданий и сползали вниз под их давлением. Эти наблюдения выяснили ещё осенью 1890 года, то есть тотчас же после археологических раскопок, что уступчивое положение фундаментов было немыслимо и дали решимость производителям работ вести на следующий год выемку до уровня нижнего сада, с целью расположить фундамент всех частей на одном горизонте, независимо от выбора основания.
Когда в августе 1891 года открылось дно выемки, то оно представилось довольно разнообразным по своему составу: вся южная часть, обращённая к подножию ската горы, состояла из насыщенной земли, местами совершенно чёрной; другая половина, обращённая внутрь горы, представляла собой песок преимущественно жёлтый, а местами белый или красный. Было очевидно, что обосновать на этой поверхности подошву фундамента стало невозможным, так как при этом добрая половина сооружения приходилась бы на наносном сильно сжимаемом грунте. Кроме того, разнородный состав нижней поверхности выемки превращал в совершенную загадку ответ на самый важный вопрос: какие слои грунта лежат ниже этой поверхности?

Единственным способом решения этого вопроса являлось производство бурения, которое и было поручено, согласно выбору производителей работ и приглашению Комитета - инженеру Н. И. Зимину. Буровые скважины были заложены в девяти местах: четыре по углам площади будущего памятника, одна посредине и четыре по концам двух взаимно-перпендикулярных диаметров. Таким образом скважины №1, 2 и 3 приходились по южной стороне памятника; №4, 5 и 6 по средней поперечной оси его и №7,8,9 в северной его части. Бурение дало следующие итоги, расположенные по скважинам

Все эти скважины были доведены до уровня, лежащего ниже горизонта Москвы реки на 0,565 сажени и на 7.2 от верхнего края выемки. Соединённые в три профиля итоги бурения дали ясную картину нижележащих слоёв грунта. В общем, как видно из черт.147-149) они представляют из себя следующее наслоение:
1) Внизу горный известняк, почти горизонтальный в левом профиле, приподнятый в северном конце в среднем проиле и поднимающийся в южном конце в правом профиле (VII).
2) Над ним толстый слой белой глины с уровнем нижних, более сильных грунтовых вод (VI-V).
3) Над нею сравнительно нетолстая прослойка красной глины (IV).
4) Над всем этим очень толстый слой разнородного песка с уровнем более слабых верхних грунтовых вод (I-III).

Поверхность песка влево от средней буровой скважины была горизонтальна, а вправо от неё быстро понижалась к низу, вероятно следуя прежнему естественному уклону холма к реке; над этой наклонною частью лежал чёрный насыпной слой земли, образовавшийся очевидно путём исторического наслоения. Таким образом половина сооружения приходилась на наносном грунте. Во избежание этого неприятного исторического условия необходимо было передвинуть его дальше, в глубь горы, с тем, чтобы подошва фундаментов его наружных стен приходилась на песчаном материке, на что, как мы уже говорили, последовало Высочайшее соизволение.»

(продолжение будет)